14 research outputs found

    Quantum gate learning in engineered qubit networks: Toffoli gate with always-on interactions

    Get PDF
    We put forward a strategy to encode a quantum operation into the unmodulated dynamics of a quantum network without the need of external control pulses, measurements or active feedback. Our optimization scheme, inspired by supervised machine learning, consists in engineering the pairwise couplings between the network qubits so that the target quantum operation is encoded in the natural reduced dynamics of a network section. The efficacy of the proposed scheme is demonstrated by the finding of uncontrolled four-qubit networks that implement either the Toffoli gate, the Fredkin gate, or remote logic operations. The proposed Toffoli gate is stable against imperfections, has a high-fidelity for fault tolerant quantum computation, and is fast, being based on the non-equilibrium dynamics.Comment: 8 pages, 3 figure

    One-step replica symmetry breaking in the language of tensor networks

    Full text link
    We develop an exact mapping between the one-step replica symmetry breaking cavity method and tensor networks. The two schemes come with complementary mathematical and numerical toolboxes that could be leveraged to improve the respective states of the art. As an example, we construct a tensor-network representation of Survey Propagation, one of the best deterministic k-SAT solvers. The resulting algorithm outperforms any existent tensor-network solver by several orders of magnitude. We comment on the generality of these ideas, and we show how to extend them to the context of quantum tensor networks

    Neural-Network Quantum States, String-Bond States, and Chiral Topological States

    Full text link
    Neural-Network Quantum States have been recently introduced as an Ansatz for describing the wave function of quantum many-body systems. We show that there are strong connections between Neural-Network Quantum States in the form of Restricted Boltzmann Machines and some classes of Tensor-Network states in arbitrary dimensions. In particular we demonstrate that short-range Restricted Boltzmann Machines are Entangled Plaquette States, while fully connected Restricted Boltzmann Machines are String-Bond States with a nonlocal geometry and low bond dimension. These results shed light on the underlying architecture of Restricted Boltzmann Machines and their efficiency at representing many-body quantum states. String-Bond States also provide a generic way of enhancing the power of Neural-Network Quantum States and a natural generalization to systems with larger local Hilbert space. We compare the advantages and drawbacks of these different classes of states and present a method to combine them together. This allows us to benefit from both the entanglement structure of Tensor Networks and the efficiency of Neural-Network Quantum States into a single Ansatz capable of targeting the wave function of strongly correlated systems. While it remains a challenge to describe states with chiral topological order using traditional Tensor Networks, we show that Neural-Network Quantum States and their String-Bond States extension can describe a lattice Fractional Quantum Hall state exactly. In addition, we provide numerical evidence that Neural-Network Quantum States can approximate a chiral spin liquid with better accuracy than Entangled Plaquette States and local String-Bond States. Our results demonstrate the efficiency of neural networks to describe complex quantum wave functions and pave the way towards the use of String-Bond States as a tool in more traditional machine-learning applications.Comment: 15 pages, 7 figure

    Kinetically Constrained Quantum Dynamics in Superconducting Circuits

    Full text link
    We study the dynamical properties of the bosonic quantum East model at low temperature. We show that a naive generalization of the corresponding spin-1/2 quantum East model does not posses analogous slow dynamical properties. In particular, conversely to the spin case, the bosonic ground state turns out to be not localized. We restore localization by introducing a repulsive interaction term. The bosonic nature of the model allows us to construct rich families of many-body localized states, including coherent, squeezed and cat states. We formalize this finding by introducing a set of superbosonic creation-annihilation operators which satisfy the bosonic commutation relations and, when acting on the vacuum, create excitations exponentially localized around a certain site of the lattice. Given the constrained nature of the model, these states retain memory of their initial conditions for long times. Even in the presence of dissipation, we show that quantum information remains localized within decoherence times tunable with the parameters of the system. We propose an implementation of the bosonic quantum East model based on state-of-the-art superconducting circuits, which could be used in the near future to explore dynamical properties of kinetically constrained models in modern platforms.Comment: 26 pages, 18 figures; improved Sec. IV, V and V

    Speed-ups to isothermality: Enhanced quantum thermal machines through control of the system-bath coupling

    Full text link
    Isothermal transformations are minimally dissipative but slow processes, as the system needs to remain close to thermal equilibrium along the protocol. Here, we show that smoothly modifying the system-bath interaction can significantly speed up such transformations. In particular, we construct protocols where the overall dissipation WdissW_{\rm diss} decays with the total time τtot\tau_{\rm tot} of the protocol as Wdissτtot2α1W_{\rm diss} \propto \tau_{\rm tot}^{-2\alpha-1}, where each value α>0\alpha > 0 can be obtained by a suitable modification of the interaction, whereas α=0\alpha=0 corresponds to a standard isothermal process where the system-bath interaction remains constant. Considering heat engines based on such speed-ups, we show that the corresponding efficiency at maximum power interpolates between the Curzon-Ahlborn efficiency for α=0\alpha =0 and the Carnot efficiency for α\alpha \to \infty. Analogous enhancements are obtained for the coefficient of performance of refrigerators. We confirm our analytical results with two numerical examples where α=1/2\alpha = 1/2, namely the time-dependent Caldeira-Leggett and resonant-level models, with strong system-environment correlations taken fully into account. We highlight the possibility of implementing our proposed speed-ups with ultracold atomic impurities and mesoscopic electronic devices.Comment: 21 pages, 14 figures. Final author versio

    A Rydberg platform for non-ergodic chiral quantum dynamics

    Full text link
    We propose a mechanism for engineering chiral interactions in Rydberg atoms via a directional antiblockade condition, where an atom can change its state only if an atom to its right (or left) is excited. The scalability of our scheme enables us to explore the many-body dynamics of kinetically constrained models with unidirectional character. We observe non-ergodic behavior via either scars, confinement, or localization, upon simply tuning the strength of two driving fields acting on the atoms. We discuss how our mechanism persists in the presence of classical noise and how the degree of chirality in the interactions can be tuned, providing paths for investigating a wide range of models.Comment: 5+3 pages, 3+1 figure

    Mind the gap: Achieving a super-Grover quantum speedup by jumping to the end

    Full text link
    We present a quantum algorithm that has rigorous runtime guarantees for several families of binary optimization problems, including Quadratic Unconstrained Binary Optimization (QUBO), Ising spin glasses (pp-spin model), and kk-local constraint satisfaction problems (kk-CSP). We show that either (a) the algorithm finds the optimal solution in time O(2(0.5c)n)O^*(2^{(0.5-c)n}) for an nn-independent constant cc, a 2cn2^{cn} advantage over Grover's algorithm; or (b) there are sufficiently many low-cost solutions such that classical random guessing produces a (1η)(1-\eta) approximation to the optimal cost value in sub-exponential time for arbitrarily small choice of η\eta. Additionally, we show that for a large fraction of random instances from the kk-spin model and for any fully satisfiable or slightly frustrated kk-CSP formula, statement (a) is the case. The algorithm and its analysis is largely inspired by Hastings' short-path algorithm [Quantum\textit{Quantum} 2\textbf{2} (2018) 78].Comment: 49 pages, 3 figure

    Quantum East model: localization, non-thermal eigenstates and slow dynamics

    Full text link
    We study in detail the properties of the quantum East model, an interacting quantum spin chain inspired by simple kinetically-constrained models of classical glasses. Through a combination of analytics, exact diagonalization and tensor-network methods we show the existence of a transition, from a fast to a slow thermalization regime, which manifests itself throughout the spectrum. On the slow side, by exploiting the localization of the ground state and the form of the Hamiltonian, we explicitly construct a large (exponential in size) number of non-thermal states which become exact finite-energy-density eigenstates in the large-size limit, as expected for a true phase transition. A ``super-spin'' generalization allows us to find a further large class of area-law states proved to display very slow relaxation. These states retain memory of their initial conditions for extremely long times. Our numerical analysis reveals that the localization properties are not limited to the ground state and that} many eigenstates have large overlap with product states and can be approximated well by matrix product states at arbitrary energy densities. The mechanism that induces localization to the ground state, and hence the non-thermal behavior of the system, can be extended to a wide range of models including a number of simple spin chains. We discuss implications of our results for slow thermalization and non-ergodicity more generally in disorder-free systems with constraints and we give numerical evidence that these results may be extended to two dimensional systems.Comment: 21 pages, 16 figure
    corecore